International Review of Mechanical Engineering (IREME)

Contents:

Determination of the Internal Stress-Strain State of Aluminium Alloy Sheet Welded by FSW or Laser Technology by Means of Bi-Dimensional Wavelet Transform
by V. Nisita, G. Quaranta, A. Amoreseano
1097

Measurement of the Thermal Diffusivity of a Tire Compound by Mean of Infrared Optical Technique
by C. Alfonis, A. Amoreseano, D. Giordano, M. Russo, F. Timpone
1104

Experimental Data and Thermodynamic Analysis of Biomass Steam Power Plant with Two Different Configurations Plant
by A. Ginelli, A. Luongo, A. Amoreseano
1109

Experimental Characterization of a Pressure Swirl Atomizer Working with High Viscous Fluids
by A. Amoreseano, G. Quaranta, V. Nisita
1117

Potential of Advanced Coal and Gas Combustion Technologies in Reducing GHG Emission – A Casc Study
by Siong Lee Koh, Yun Seng Lim, Stella Morris
1125

The Influence of Micro-Alloying and Cooling Rate on Microstructure of Hot Rolled and Annealed AZ31 Sheet
by M. Aljarrah, E. Essadqi
1139

Performance of a Dynamic Vibration Absorber Using a Magneto-Rheological Damper
by Mahmoud H. Salem, M. N. Alsayy, M. El-Habrout, Sohal F. Rezeka
1146

Numerical Study of Combined Heat and Mass Transfer in the Silica Gel–Water Adsorption Chiller
by Kamel Rabhi, Chauki Ali, Habib Ben Bacha
1157

Experimentation and Prediction of Vibration Amplitude in End Milling with Reference to Radial Rake Angle
by G. Mahesh, S. Muthu, S. R. Devadasan
1164

Investigation of Aluminum and Titanium Based Metal Matrix Composite
by V. Suresh, R. Sivakubrananthan, R. Magavellaran, V. Ajith
1175

An Experimental Investigation Over a Y-Shaped Diffusing Duct with 600 mm CI & 764 mm RC with Different Yaw Angles: a Comparative Study
by Nethapal Singh, Akbar Rahim, Mohd Islam
1181

Numerical Simulation of Casting Solidification by Boundary Element Method
by G. Pitchayapillai, P. Senthilkumar
1192

(continued on inside back cover)
(continued from inside back cover)

A Fault Diagnosis System for Industry Pipe Manufacturing Process
by Chen, Vai Tan, V. K. Kher

Improving the Product Design Process by Applying DFMA Case: PM Motor
by E. Kaurinen, H. Eiskelinen

Feasibility Study of Using Jatropha (jatropha curcas) Oil as Bio-Diesel on
an Oil Firing Burner System
by M. S. A. Ishak, M. N. M. Jafar, M. A. A. Arizai, M. A. Abu Kaisim

A Study on Fiber Glass Composite Hovercraft Hull with Different Wall Thickness
Using Generative Structural Analysis
by A. F. Aiman, A. M. Tarmizi, B. Bakri, M. S. Hassin, M. R. M. Hafiezal, M. A. Faiszal

Effect of Welding Parameters (Heat Input) on Mechanical Behavior and Microstructure
of Submerged Arc Welded HSLA Steel Joints
by Bipin Kumar Srivastava, S. P. Tevari, Iyoo Prakash

Microstructure and Wear Behavior of Planetary Gear Material and Metal Carbide Coating
by R. Dhanasekaran, P. Senthi Kumar, K. Senthil

Results Produced by Adding Nb, Mo, Cr and Ti in Microstructure on the WC-6Co

Dynamic Scheduling of Flexible Manufacturing System Using Multiagent System - A Review
by M. Krishna, T. R. Chinna, T. Karthikeyan

Simulation of Medium Purity Gaseous Oxygen Cryogenic Plant for Biomass Gasification
by Aspen Plus
by Vajinath N. Raghole, S. N. S. S. Sai

Experimental Equations for Lift and Drag Coefficients of Entrainment Airfoils
by Valeria Dragan

Application of Analysis of Envelope’s Spectrum for Gearbox Diagnosing
by T. Figura, A. Wilke

Efficiency Improvement of Domestic Refrigerators by Condenser Modification
by N. S. Senasayake

Optimization of Cutting Parameters for Aluminum and Silicon Carbide Composite
Using Taguchi’s Techniques
by C. Dhana, T. A. A. Alkawany

Optimal Allocation of Machining Tolerance through Tolerance Charting
by M. Thilak, K. Sivakumar, G. Jayaprakash

Praise Worthy Prize

€ 160,00
Results Produced by Adding Nb, Mo, Cr and Ti in Microstructure of the WC-6Co

J. R. Savi, V. Brustoj, V. Brustoj, S. Schaeffer, M. Martin, W. Rodrigues, C. Ferreira

Abstract — The hard metals constitute a group of materials known as composite sintered hard phases that are used in cutting tools, dies, drills, and mining wear-resistant components. The high hardness and resistance to corrosion, abrasion, and high thermal expansion are the main reasons for their increasing use. WC-Co is a material consisting of hard particles enclosed in a metal binder produced by powder metallurgy. The particles of high hardness are formed of carbides of tungsten and carbon (WC-Co) [4]. The metal used as the binder is iron, which is also used in industrial manufacturing processes. This process is extremely essential [2]. This paper aims to present the main effects of adding Nb, Ti, Cr, and Mo in the microstructure and mechanical properties of cemented carbide WC-6Co processed via sintering [5].

I. Introduction

Produced by powder metallurgy, the carbide is a composite material that has found many applications in industrial fields, especially in the manufacture of cutting tools, dies, drills, and mining wear-resistant components. The high hardness and resistance to corrosion, abrasion, and high thermal expansion are the main reasons for their increasing use. WC-Co is a material consisting of hard particles enclosed in a metal binder produced by powder metallurgy. The particles of high hardness are formed of carbides of tungsten and carbon (WC-Co) [4]. The metal used as the binder is iron, which is also used in industrial manufacturing processes. This process is extremely essential [2]. This paper aims to present the main effects of adding Nb, Ti, Cr, and Mo in the microstructure and mechanical properties of cemented carbide WC-6Co processed via sintering [5].

II. Materials and Methods

For this study, we started with the WC-powder 6Co, 99.5% composition given in Table I, supplied by Alfa Aesar, -325 mesh, which served as a raw material base.

<table>
<thead>
<tr>
<th>TABLE I: COMPOSITION OF THE COMPOSITE POWDER WC-6Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>WC</td>
</tr>
<tr>
<td>Co</td>
</tr>
</tbody>
</table>

The desired composites were obtained by mixing conventional WC-6Co with 1% wt. of Nb, Mo, Cr and Ti. To this composite was added zinc stearate (1.5 wt%) as a lubricant. The composite was pressed in a mold with a diameter of 25 mm and a height of 25 mm, with a pressure of 400 MPa and a sintering temperature of 1450 °C for 1 hour. The resulting composite was cooled to room temperature and then machined to the desired shape.

The desired composite was subjected to sintering at a temperature of 1450 °C for 1 hour under a nitrogen atmosphere. The resulting composite was cooled to room temperature and then machined to the desired shape.

The samples were compressed in size, geometry, and composition of the required material, having sufficient integrity to be handled. It was found by curve comprehensibility of the material, which from 400 MPa to a green density pressure became constant. It was determined the compression pressure, obtained through the compressibility curve of the alloy, drawn based on ASTM B331. We chose to use a 200 MPa pressure and therefore the average green density around 8.21 g/cm³ for samples with the addition of elemental powders of Nb, Mo, Cr, and Ti.

III. Results and Discussion

At this stage of the study, we will present the following results: a micrograph of the powders, the green density, sintered density, shrinkage, hardness and microstructure of the composites studied for sintering cycle. We used scanning electron microscopy to submicron scales of the powders used in this work. Fig. 2 shows the starting powder particles of WC-6Co with magnification of 5000× and Fig. 3 shows the powder particles of WC-6Co with magnification of 5000×. Two figures show that the particle sizes range from 1 to 5 μm and are bonded with sizes 10-20 μm.

The Fig. 4 shows the powder particles of niobium (Nb) with magnification of 1500× and Fig. 5 shows the powder particles of molybdenum (Mo) with magnification of 2000×.

Fig. 1. Details powder type Y used in this step of the process

The sintering was performed in argon atmosphere due to the fact that it is inert gas. From a scientific viewpoint, the vacuum is considered the best atmosphere because they enable the sintering of metals whose oxides are

Table II shows the values obtained from the green density for a compression pressure of 200 MPa. In this stage of the process, it reached particles with the green density, used in industrial manufacturing processes.

<table>
<thead>
<tr>
<th>TABLE II: DENSITY VALUES FOR THE GREEN CARBIDE COMPOSITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>WC-6Co</td>
</tr>
<tr>
<td>WC-6Co-Nb</td>
</tr>
<tr>
<td>WC-6Co-Mo</td>
</tr>
<tr>
<td>WC-6Co-Ti</td>
</tr>
</tbody>
</table>

The sintering was performed in argon atmosphere due to the fact that it is inert gas. From a scientific viewpoint, the vacuum is considered the best atmosphere because they enable the sintering of metals whose oxides are
The composite WC-6Co-Mo showed the third highest density of the sintered and worst microhardness of the composites studied, this can mean a good weldability with respect to molybdenum disilicide, causing the grain growth in the composite, but the sintering temperature is relatively correct. The composite commercial ceramic showed the sample hardness in relation to carbide compounds studied with the second worst density. The carbide WC-6Co-Ti had the second lowest hardness and low density, the latter being directly influenced the density of titanium. The Table IV shows a relationship between sintering temperature, density and volumetric shrinkage for samples WC-6Co.

Fig. 13. Sintering temperature, density and volumetric shrinkage for samples WC-6Co.

Table IV. Sintering Temperature, Density and Volumetric Shrinkage for WC-6Co.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Sintered Density (g/cm³)</th>
<th>Shrinkage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC-6Co</td>
<td>14.75</td>
<td>45.3</td>
</tr>
<tr>
<td>WC-6Co-Mo</td>
<td>14.38</td>
<td>41.0</td>
</tr>
<tr>
<td>WC-6Co-Mo-Cr</td>
<td>13.87</td>
<td>38.6</td>
</tr>
<tr>
<td>WC-6Co-Ti</td>
<td>13.95</td>
<td>38.1</td>
</tr>
</tbody>
</table>

The Table IV lists the density of sintered composites with shrinkage, indicating the possibility of a greater need for deeper study of sintering temperature of the composites. The shrinkage may indicate that the sintering temperature used was below the necessary temperature for satisfactory contraction, as indicated in literature range from 40 to 50%. Assays of potentiodynamic polarization curves were performed in acetic 0.5 M in H₂SO₄, using the sweep rate of 30 mV/min to make possible an overview of the electrochemical behavior of sintered carbides compared curves as a function of current density.

The cathodic curves for WC-6Co-Mo and WC-6Co-Cr exhibit similar behavior. A sample of WC-6Co-Ti showed a large reduction of anodic current when compared with the other samples. The potentiodynamic curve of the sample apparently no titanium oxide film had its destroyed, i.e., the material is undergoing slower corrosion, this means it is more resistant. The Fig. 14 shows potentiodynamic polarization curves with different additions of 1% of elemental metal powders. It is noted that the potential of the samples refers to the saturated calomel electrode (SCE).

Fig. 14. Potentiodynamic polarization curve.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Ecorr (mV)</th>
<th>Icorr (μA/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC-6Co</td>
<td>-3.91</td>
<td>1.54x10⁻⁴</td>
</tr>
<tr>
<td>WC-6Co-Mo</td>
<td>-3.32</td>
<td>1.58x10⁻⁴</td>
</tr>
<tr>
<td>WC-6Co-Mo-Cr</td>
<td>-3.32</td>
<td>3.67x10⁻⁴</td>
</tr>
<tr>
<td>WC-6Co-Ti</td>
<td>-2.68</td>
<td>8.31x10⁻⁴</td>
</tr>
</tbody>
</table>

IV. Conclusion

This study consisted of the determination of the production and properties of grain density, relative density, hardness, volumetric shrinkage of a composite material of WC 6% Co added with 7% of Nb, Mo, and Cr and Ti. The experiments showed that the sintering temperature corresponded satisfactorily results due to shrinkage and sintered density.

The compressive curve determined the correct pressure for compaction around 200 MPa, which does not require much of the tooling and parts are obtained with the green resistance in handling.

The percentage of metal added in commercial trading carbide WC-6Co is down to the metal identification in the MSF micrograph of the post. The green density according to the results found in literature, ranging from 7.5 to 8.5 g/cm³.

The relative density shows that the percentage of high densification occurs in the composite WC-6Co-Mo followed by WC-6Co-Nb, WC-6Co-Mo, WC-6Co-Cr and WC-6Co-Ti, presenting this trend due to weldability of the metal powder matrix with tungsten carbide. The shrinkage may indicate that the sintering temperature used was below the necessary temperature for satisfactory contraction, according to literature range of 40 to 50%. This information offers a more detailed study of the last two composites in relation to temperature and time effective sintering.

The micrographs of the compositions showed similar to the literature validating again the mass balancing process for obtaining the compositions. In microstructures presented was not possible to identify the alloying elements that have been added due to its solubility in WC-6Co.
J. R. Savi et al.

Vilton Menegon Bristot - PhD in the Engineering of Mines Metallurgy and Materials, Federal University of Rio Grande do Sul, master's at Mechanical Engineering from Federal University of Rio Grande do Sul, and Bachelor's at Engenharia Agrimensura from University do Extremo Sul Catarinense. He is currently professor/researcher at the Faculty SATC, a professor/researcher at the University Barriga Verde (UNIBAVE), a professor/researcher at the University do Extremo Sul Catarinense (UNESC) and professor at the Institute Maximiliano Gaidzinski. E-mail: vilton.brsete@gmail.com

Vilmor Menegon Bristot - Bachelor's at Engineering Agrimensura from University do Extremo Sul Catarinense (1995), master's at Electric Engineering from Federal University of Santa Catarina (2003) and PhD student in the Engineering of Mines Metallurgy and Materials, Federal University of Rio Grande do Sul. He is currently professor/researcher at the Faculty SATC, a professor/researcher at the University do Extremo Sul Catarinense and director/researcher at the Institute Maximiliano Gaidzinski. E-mail: vilmor@imepet.org.br

Lírio Schaeffer - Ph.D. in Mechanical Forming, Rheinisches-Westfälischen Technischen Hochschule/Aachen, R.W.T.H.A., Germany. Professional performance: Coordination of Improvement of Higher Education Personnel, CAPES, Brazil. 2003 - Present - Relationship: Employee: Department of Metallurgy, UFRGS, Brazil, 1974 - Present - Public Servants, Functional Placement: Professor, Exclusive Dedication. E-mail: schaeffer@ufpr.br

Vinicius Martins - Professor at the Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS) Graduated in Mechanical Manufacture Technology Center for Federal Education Tecnologica (CEFE-RS) and Masters in PPGEM/UFRGS Graduate Program Eng in Mining, Metallurgical and Materials, Federal University of Rio Grande do Sul. He is currently a Doctoral Fellow at the Federal University of Rio Grande do Sul, acting on the following topics: powder metallurgy, dies, carbide, nitride, mechanical forming and shaping sheet metal. E-mail: vinicius@uper.com.br

Wilson Corrêa Rodrigues - Graduated in Metallurgical Engineering from Universidade Federal do Rio Grande do Sul has experience in research projects in the area of Materials and Metallurgical Engineering, with emphasis on manufacturing processes in the metal-mechanical, acting on the following subjects: mechanical forming and powder metallurgy. E-mail: wilcor_br@yahoo.com.br

Carlos Antônio Ferreira - Bachelor's at Electrical Engineering from University of Santa Catarina (1996), master's at Engineering of Mines Metallurgy and Materials, Federal University of Rio Grande do Sul, (2011). He is currently director, professor and researcher at the Faculty SATC. E-mail: carlos.ferreira@satc.edu.br